A better packing of ten equal circles in a square
نویسنده
چکیده
Let S be a square of side s in the Euclidean plane. A pucking of circles in S is nothing else but a finite family of circular disks included in S whose interiors are pairwise disjoints. A natural problem related with such packings is the description of the densest ones; in particular, what is the greatest value of the common radius r of n circles forming a packing of S? Clearly, the centres of n circles forming a packing of S are included in a square of side s 2r, and any two centres cannot have a distance smaller than 2r. Conversely, if n points of a unit square determine positive distances which are not smaller than a real number m, then the square S admits a packing of n circles of radius B, where
منابع مشابه
Packing Equal Circles in a Square: I. Solution Properties
In this paper some properties of optimal solutions for the problem of packing n equal circles into the unit square will be derived. In particular, properties, which must be satissed by at least one optimal solution of the problem and stating the intuitive fact that as many circles as possible should touch the boundary of the unit square, will be introduced.
متن کاملNew results in the packing of equal circles in a square
The problem of nding the maximum diameter of n equal mutually disjoint circles inside a unit square is addressed in this paper. Exact solutions exist for only n = 1; : : : ; 9; 10; 16; 25; 36 while for other n only conjectural solutions have been reported. In this work a max{min optimization approach is introduced which matches the best reported solutions in the literature for all n 30, yields ...
متن کاملPacking up to 50 Equal Circles in a Square
The Hungarian mathematician Farkas Bolyai (1775–1856) published in his principal work (‘Tentamen’, 1832–33 [Bol04]) a dense regular packing of equal circles in an equilateral triangle (see Fig. 1). He defined an infinite packing series and investigated the limit of vacuitas (in Latin, the gap in the triangle outside the circles). It is interesting that these packings are not always optimal in s...
متن کاملGlobal Optimization in Geometry — Circle Packing into the Square
The present review paper summarizes the research work done mostly by the authors on packing equal circles in the unit square in the last years.
متن کاملSymmetry Breaking Constraints for the Problem of Packing Equal Circles in a Square
The Packing Equal Circles in a Square (PECS) problem is a nonconvex nonlinear optimization problem which involves a high degree of symmetry. The Branch-and-Bound algorithms work bad due to the presence of symmetric optima, because the Branch-and-Bound tree becomes large, and the time to reach the leaves (i.e., the optimal solutions) increases. In this paper, we introduce some inequalities which...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 76 شماره
صفحات -
تاریخ انتشار 1989